Skip to main content

Tag: Weiner

Wistar Study Opens the Door to Faster, Cheaper HIV Vaccine Research

For the first time, scientists have developed an DNA-encoded immunogen that produces Tier-2 antibodies—the kind that matter for combatting HIV

Nearly four decades after its discovery, HIV has killed 36.3 million people, with no vaccine in sight. Part of the reason vaccine development has been slow is because trialing candidate vaccines that produce Tier-2 neutralizing antibodies—the kind that matter for combatting HIV—has always required long and expensive experiments in large animal models like rabbits and macaque monkeys.

An effective HIV vaccine needs to produce antibodies that protect against the most common variants of HIV, which are categorized as “Tier 2” viruses based on how quickly and easily they can be neutralized by antibodies (more quickly/easily than Tier 3, less than Tier 1).

A new study by scientists at The Wistar Institute shows a quicker, less expensive path to developing this tier of antibodies. For the first time, these scientists have demonstrated a method for eliciting Tier-2 neutralizing antibodies in mice.

“Mice are the workhorse of vaccine design and development because you can iterate lots of concepts in that model due to cost and time constraints,” said Daniel Kulp, Ph.D., associate professor in the Vaccine & Immunotherapy Center at The Wistar Institute.

The scientists developed an immunogen—a substance that causes an immune response—called a native-like trimer, which they administered to mice. Importantly, they encoded the immunogen in DNA, which turns the host bodies (in this case the mice) into “antigen factories” instead of requiring what would otherwise be a complex and expensive vaccine manufacturing process.

They then compared the results from the mice who received the DNA-encoded native-like trimer to results from mice who received a standard protein immunization. Only those mice that received the DNA-encoded native-like trimer developed Tier-2 neutralizing antibodies.

From there, they were able to isolate and examine the atomic structure of one of the antibodies that their immunogen had produced. “The structure gives us incredible insight into how this antibody is able to neutralize the virus,” said Kulp.

“Our data demonstrates the value of this approach as a tool to create surgically tailored immunity against a difficult pathogen’s vulnerable sites, in this case for HIV,” said coauthor David B. Weiner, Ph.D., executive vice president and director of the Vaccine & Immunotherapy Center and the W.W. Smith Charitable Trust Professor in Cancer Research at The Wistar Institute.

Wistar Scientists Move HIV Vaccine Research Forward by Developing an Immunogen that Produces Tier-2 Antibodies—the Kind That Matter for Combatting HIV

PHILADELPHIA — (Feb. 4, 2022) — Nearly four decades after its discovery, HIV has killed 36.3 million people, with no vaccine in sight. However, a new study by researchers at The Wistar Institute, an international biomedical research leader in cancer, immunology, infectious disease, and vaccine development, takes a promising step in the direction of developing an HIV vaccine.

The findings, published in Nature Communications, demonstrate the promise of using a unique native-like trimer to develop Tier-2 neutralizing antibodies—the kind that matter for combatting HIV—in mice for the first time.

Previously, eliciting these types of antibodies using candidate vaccines required long and expensive experiments in large animal models creating a significant bottleneck on HIV-1 vaccine development. “With our new finding, we have opened the door to rapid, iterative vaccinology in a model that can produce Tier-2 neutralizing antibodies, enabling development of more advanced HIV vaccine concepts,” said Daniel Kulp, Ph.D., associate professor in the Vaccine & Immunotherapy Center at The Wistar Institute and corresponding author on the paper.

The researchers encoded the native-like trimer into DNA for delivery into the mice. This has the practical advantage of turning the host bodies into “antigen factories” instead of requiring what would otherwise be a complex vaccine manufacturing process. The researchers then compared the results from the mice who received the DNA-encoded native-like trimer to results from mice who received a standard protein immunization. Only those mice that received the DNA-encoded native-like trimer developed Tier-2 neutralizing antibodies.

“We were able to generate strong immune responses with both platforms, but the DNA platform uniquely drove this neutralizing response,” said Kulp.

Once they’d verified their immunization regime was producing Tier-2 antibodies, Kulp and his colleagues isolated monoclonal antibodies from the mice and used cryo-electron microscopy to determine the atomic structure of one Tier-2 neutralizing monoclonal antibody. They found that the antibody binds to an epitope (a segment of a protein that sticks out of the antigen, which prompts an immune response) called C3V5. In the gold standard HIV vaccine model (non-human primates), prior research has shown that antibodies binding to C3V5 protect animals from a SHIV infection, which is a close relative of HIV that infects non-human primates.

“The structure gives us incredible insight into how this antibody is able to neutralize the virus,” said Kulp. “For the first time, we can strategize about how to design new vaccines that can generate broadly neutralizing antibody responses to the C3V5 epitope.”

Coauthor David B. Weiner, Ph.D., executive vice president and director of the Vaccine & Immunotherapy Center and the W.W. Smith Charitable Trust Professor in Cancer Research at The Wistar Institute, emphasized the utility of their findings.

“What we’ve done is enable direct in vivo self-assembly of structurally designed immunogens, which are engineered and delivered using nucleic acid technology, inside the vaccinated animal. Our data demonstrating induction of autologous Tier 2 neutralization illustrate the value of this approach as a tool to create surgically tailored immunity against a difficult pathogen’s vulnerable sites, in this case for HIV.”

Co-authors: Ziyang Xu, Susanne Walker, Neethu Chokkalingam, Mansi Purwar, Edgar Tello-Ruiz, Yuanhan Wu, Sonali Majumdar, Kylie M. Konrath, Abhijeet Kulkarni, Nicholas J. Tursi, Faraz I. Zaidi, Emma L. Reuschel, Ishaan Patel, April Obeirne, David B. Weiner, and Daniel W. Kulp from The Wistar Institute; Megan C. Wise, Katherine Schultheis, Lauren Gites, Trevor Smith, Janess Mendoza, Kate E. Broderick, and Laurent Humeau from Inovio Pharmaceuticals; Alan Moore, Jianqiu Du, and Jesper Pallesen from Indiana University.

Work supported by: National Health Institutes (NIH) IPCAVD Grant U19 Al109646-04; W. W. Smith Charitable Trust; and Wistar Monica H.M. Shander Memorial Fellowship.

Publication information: Induction of Tier-2 Neutralizing Antibodies in Mice with a DNA-encoded HIV Envelope Native Like Trimer, Nature Communications, 2022. Online publication.

###

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the United States, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. wistar.org.

Novel Nanoparticle SARS-CoV-2 Vaccine Combines Immune Focusing and Self-assembling Nanoparticles to Elicit More Potent Protection

PHILADELPHIA — (Feb. 1, 2022) — The first generation of COVID-19 vaccines have been highly effective, but also have limitations: their efficacy can wane without a booster shot, and they may be less effective against some variants. Now scientists at The Wistar Institute have developed a more targeted vaccine that, in animal studies, shows stronger, broader, and more durable protection in a single, low dose.

The vaccine combines three technologies – immune focusing, self-assembling nanoparticles, and DNA delivery – into a single platform for the first time. In addition to its other advantages, the vaccine could be stored at room temperature, making it potentially easier to transport to remote or developing locations than existing mRNA vaccines, which require specialized cold storage.

“This is among the first next-generation vaccines that will have more advanced features and broader protection,” said Daniel Kulp, Ph.D., associate professor in the Vaccine & Immunotherapy Center at The Wistar Institute and corresponding author of the study.

The paper, “Nucleic acid delivery of immune-focused SARS-CoV-2 nanoparticles drive rapid and potent immunogenicity capable of single-dose protection,” was published in the journal Cell Reports.

Existing vaccines include an unmodifided receptor binding domain of SARS-CoV-2 spike protein. The new vaccine includes a rationally engineered receptor binding domain using computational and structure-based design methodologies. The engineered receptor binding domain blocks ‘immune distracting’ sites and can therefore elicit stronger levels of protective, neutralizing antibodies.

Researchers then used naturally self-assembling proteins to form nanoparticles which display these highly engineered immunogens. By arranging themselves into structures that resemble an actual virus, the nanoparticles are more easily recognized by the immune system and transported to the germinal centers, where they activate B cells which produce protective antibodies.

Using nucleic acid vaccine delivery technology similar to mRNA, the nanoparticle vaccine is encoded in DNA and delivered into cells thereby giving genetic instructions for the body to build the immunogen internally. This is an advance over traditional vaccines that must be manufactured in specialized factories through complex vaccine production processes. In contrast to other vaccines, Dr. Kulp noted that one advantage of the DNA platform is that it doesn’t require refrigeration and it can also be quickly reformulated to target new variants.

In animal models, researchers found that the DNA delivered immune-focused nanoparticle vaccine produced much higher levels of neutralizing antibodies than the vaccine that wasn’t immune-focused.

“A difficulty with current vaccines is that neutralizing antibodies decline over time,” Kulp said. The nanoparticle vaccine produced durable responses after a single immunization out to six months in mice, unlike what we are seeing with current SARS-CoV-2 vaccines in people.

The ultimate test for SARS-CoV-2 vaccine candidates is protection from death in SARS-CoV-2 challenge experiments. The researchers found that in a lethal challenge model 100% of mice who received the immune-focused nanoparticle vaccine were protected from death with a single low dose. Most mice who received the standard, non-immune focused vaccine died within 10 days of challenge.

The vaccine assessment was conducted in both wild-type mice and mice that were genetically engineered to mimic human immune systems, he noted.

Even without being updated, the immune-focused vaccine showed a comparable level of antibody production to Delta, and other variants, Kulp said. That’s partly because of the immune focusing approach itself, he noted; in blocking parts of the receptive binding domain for the purpose of inhibiting non-neutralizing antibodies, it also blocks many of the areas affected by spike protein mutations. Studies on the Omicron variant are underway.

Researchers are seeking funding to begin human trials of the vaccine.

Co-author David B. Weiner, Ph.D., executive vice president, director of the Vaccine & Immunotherapy Center and the W.W. Smith Charitable Trust Professor in Cancer Research, at The Wistar Institute, said the vaccine could provide a needed step forward to improve protection against COVID-19.

“Current vaccine effects on reducing transmission of SARS-CoV-2 variants of concern including Delta and Omicron could be improved for their breadth of protection as well as their immune potency,” Weiner said. “This study demonstrates that using a nucleic acid approach combined with in vivo structural assembly of a glycan immune-focused nanoparticle drives single protection and neutralization against diverse variants of concern in a dose-sparing formulation. Additional studies of this vaccine approach for SARS-CoV-2 appear timely and important.”

Co-authors: Kylie M. Konrath, Kevin Liaw, Yuanhan Wu, Xizhou Zhu, Susanne N. Walker, Ziyang Xu, Neethu Chokkalingam, Nicholas J. Tursi, Mansi Purwar, Emma Reuschel, Drew Frase, Benjamin Fry, and Ami Patel from Wistar; Katherine Schultheis, Igor Maricic, Viviane M. Andrade, Kate E. Broderick, Laurent M.P.F. Humeau, and Trevor R.F. Smith from Inovio Pharmaceuticals; Himanshi Chawla and Max Crispin from the University of Southhampton; Jianqiu Du and Alan Moore from Indiana University; Jared Adolf-Bryfogle and Jesper Pallesen from the Institute for Protein Innovation; Matthew Sullivan from the University of Pennsylvania; and Christel Iffland from Ligand Pharmaceuticals.

Work supported by: Wistar Coronavirus Discovery Fund, CURE/PA Department of Health grant SAP# 4100083104, COVID/PA Department of Human Services grant SAP# 4100089371, NIH/NIAID CIVICs grant 75N93019C00051, Wistar SRA 16-4 / Inovio Pharmaceuticals, Indiana University.

Publication information: Nucleic acid delivery of immune-focused SARS-CoV-2 nanoparticles drive rapid and potent immunogenicity capable of single-dose protection, Cell Reports, 2022.

Latest Wistar Discoveries: Fine-tuning Vaccine Delivery in Preclinical Models to Advance MERS DNA Vaccine Candidate and Discovering New Targets for Cancer Therapy

A team of Wistar scientists led by Dr. David Weiner, Wistar executive vice president, director of the Vaccine & Immunotherapy Center and W.W. Smith Charitable Trust Professor in Cancer Research, and Dr. Ami Patel, Caspar Wistar Fellow, and collaborators have developed a synthetic DNA vaccine candidate for Middle East respiratory syndrome coronavirus (MERS-CoV).

A vaccine candidate based on their research was shown to be safe and tolerable in a recently completed human phase 1 study with a three-dose intramuscular injection regimen and is currently in phase 1/2a trial.

Our scientists continue to expand the preclinical studies of the vaccine in support of its clinical development. They have now tested intradermal delivery using a shortened two-dose immunization schedule in non-human primates (NHP).

“Low-dose delivery and shortened regimes are crucial to rapidly induce protective immunity, particularly during emerging outbreaks, as the current SARS-CoV-2 pandemic has emphasized,” said Weiner.

In a paper published in the journal JCI Insight, he and colleagues reported that low-dose intradermal administration induces potent immunity and protects from virus challenge. The low-dose regimen with intradermal delivery was more impactful in controlling disease and symptoms than the higher dose given intramuscularly.

“Intradermal delivery of synthetic DNA vaccines has significant advantages for rapid clinical development. It can be dose sparing and has higher tolerability in people compared with intramuscular injection,” said Patel.

Their experience developing this MERS vaccine candidate helped the team advance a COVID-19 vaccine through clinical trials in a short time.

Vaccine candidates that are simple to deliver, well tolerated, and can be readily deployed in resource-limited settings will be important to achieve control of infection for coronaviruses and other emerging infectious diseases.


The lab of Dr. Rugang Zhang, deputy director of The Wistar Institute Cancer Center, Christopher M. Davis Professor and leader of the Immunology, Microenvironment & Metastasis Program, studies the process of cellular senescence and the changes in gene expression that accompany it.

Cellular senescence is a stable state of growth arrest in which cells stop dividing but remain viable and produce an array of inflammatory molecules collectively defined as senescence-associated secretory phenotype (SASP). These molecules account for the complex crosstalk between senescent cells and neighboring cells and the effect of cellular senescence in various physiological processes like aging and diseases like cancer.

Although senescence is regarded as a powerful barrier for tumor development, the SASP plays a role during tumor development promoting the growth of established tumors.

In a new study published in Nature Cell Biology, Zhang and colleagues pointed out a new mechanism that allows cells to turn on a set of genes encoding for the SASP molecules.

“This mechanism may potentially be targeted to stop the tumor-promoting aspect of senescence while preserving its antitumor function,” said Zhang.

The team focused on two proteins called METTL3 and METTL14 that are known for other molecular functions and found that these proteins moonlight as regulators of gene expression that help turn on SASP genes.

“Although we focused on senescence, we envision that this function of METTL3 and METTL14 may be involved in many other biological processes beyond our current study,” said Zhang. 

Low-dose Administration of MERS DNA Vaccine Candidate Induces Potent Immunity and Protects From Virus Challenge in Preclinical Models

PHILADELPHIA — (April 22, 2021) — A synthetic DNA vaccine candidate for Middle East respiratory syndrome coronavirus (MERS-CoV) developed at The Wistar Institute induced potent immune responses and afforded protective efficacy in non-human primate (NHP) models when given intradermally in abbreviated, low-dose immunization regimen. A similar vaccine candidate was previously shown to be safe and tolerable with a three-dose intramuscular injection regimen in a recently completed human phase 1 study and is currently in expanded studies of phase 1/2a trial. New results were published today in JCI Insight.

“While several vaccine products are being advanced against MERS and other coronaviruses, low-dose delivery and shortened regimes are crucial to rapidly induce protective immunity, particularly during emerging outbreaks, as the current SARS-CoV-2 pandemic has emphasized,” said David B. Weiner, Ph.D., Wistar executive vice president, director of the Vaccine & Immunotherapy Center (VIC) and W.W. Smith Charitable Trust Professor in Cancer Research, who led the study.

Researchers evaluated the immunogenicity and protective efficacy of their MERS synthetic vaccine when delivered intradermally using a shortened two-dose immunization schedule compared with intramuscular delivery of higher doses in NHP.

“Given that human efficacy trials for MERS vaccines may be challenging due to the low number of yearly cases, animal models such as our NHP model are valuable as a bridge with human data coming from early-phase clinical trials,” said Weiner.

In this study, Weiner and team report robust antibody neutralizing antibodies and cellular immune responses in all conditions tested. A rigorous virus challenge experiment showed that all vaccination groups were protected against MERS-CoV compared to unvaccinated control animals. However, the low-dose regimen with intradermal delivery was more impactful in controlling disease and symptoms than the higher dose delivered intramuscularly in NHP models.

“To our knowledge, this is the first demonstration of protection with an intradermally delivered coronavirus vaccine,” said Ami Patel, Ph.D., Caspar Wistar Fellow at the Vaccine & Immunotherapy Center and one of the lead authors of the paper. “Intradermal delivery of synthetic DNA vaccines has significant advantages for rapid clinical development. It can be dose sparing and has higher tolerability in people compared with intramuscular injection. The positive results of this study are important not only for the advancement of this MERS vaccine but also for development of other vaccines.”

“Our team is also advancing a COVID-19 vaccine through clinical trials, and we were able to do so in a very short time thanks to our previous experience developing the MERS vaccine,” added Weiner.

Importantly, no evidence of adverse effects on the lungs was observed in any of the dosing groups compared to unimmunized control animals. Through the assessment of a large panel of blood cytokines, researchers showed significant decrease in all mediators of inflammation, which further suggests the vaccine prevents the destructive inflammation induced by coronaviruses.

“In the past twenty years, three new coronaviruses have emerged and caused human outbreaks. The current SARS-CoV-2 pandemic has further emphasized the importance of rapid infection control for coronaviruses and other emerging infectious diseases,” said Emma L. Reuschel, Ph.D., a staff scientist in the Weiner lab and co-first author on the study. “Vaccine candidates that are simple to deliver, well tolerated, and can be readily deployed in resource-limited settings will be important to achieve control of infection.”

Co-authors: Ziyang Xu, Faraz I. Zaidi, Kevin Y. Kim, Regina Stoltz, and Kar Muthumani from The Wistar Institute; Dana P. Scott, Friederike Feldmann, Tina Thomas, Rebecca Rosenke, Dan Long, Jamie Lovaglio, Patrick W. Hanley, and Greg Saturday from National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT; Janess Mendoza, Stephanie Ramos, Laurent Humeau, and Kate E. Broderick from INOVIO Pharmaceuticals, Inc.

Work supported by: Funding from the Intramural Research Program, National Institutes of Allergy and Infectious Diseases, and the Coalition for Epidemic Preparedness Innovations (CEPI).

Publication information: Intradermal delivery of a synthetic DNA vaccine protects macaques from Middle East respiratory syndrome coronavirus, JCI Insight (2021). Online publication.

###

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the United States, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. wistar.org.

DARPA and JPEO-CBRND Award $37.6M to The Wistar Institute and Collaborators at INOVIO, AstraZeneca, Penn, & Indiana University to Develop Innovative COVID-19 Treatment

PHILADELPHIA — (Dec. 15, 2020) — A team of scientists from The Wistar Institute, INOVIO, AstraZeneca, the Perelman School of Medicine at the University of Pennsylvania, and Indiana University has received a $37.6 million award over two years from the Defense Advanced Research Projects Agency (DARPA) and the Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND) for rapid preclinical development and translational studies of DNA-encoded monoclonal antibodies (DMAbs) as countermeasures for COVID-19.

DMAbs, unlike conventional therapeutic antibodies, are administered as genetic blueprints that instruct the patient’s body to build its own highly specific antibodies against pathogens, such as bacteria and viruses, and as immunotherapeutics for cancer. Conceptually DMAbs have advantages over traditional monoclonal antibodies in scale-up and delivery, which would rapidly benefit large populations.

Worldwide, more than 72 million people are infected with SARS-CoV-2 and more than 1.6 million have died. The U.S. outbreak alone has resulted in the hospitalization of over 110,000 people. Sixteen million Americans have been infected, and more than 300,000 have died of COVID-19 since the outbreak began.*

Wistar scientists and their collaborators pioneered the development of DMAb technology as a unique asset to combat the COVID-19 pandemic. In addition to their high specificity for the target, DMAbs have important advantages of rapid manufacturing, low cost of production, and temperature-stable storage and distribution.

The concept of synthetic DMAb technology was originated in the laboratory of David B. Weiner, Ph.D., Wistar executive vice president, director of the Vaccine & Immunotherapy Center, and the W.W. Smith Charitable Trust Professor in Cancer Research. The technology involves the design and delivery of genetic sequences that encode monoclonal antibodies into an optimized DNA platform. This genetic blueprint is then administered to a person so that their own body becomes the production site of highly specific antibodies which, in the case of SARS-CoV-2, target essential parts of the virus. In animal studies, DMAbs have been applied to prevent infection as well as to treat infection.

“We are thrilled that DARPA and JPEO-CBRND have chosen Wistar to assemble this exceptional team to focus on advancing potential DMAb countermeasures for the SARS-CoV-2 crisis,” said Weiner. “Our team combines many different strengths to advance this approach from the bench to the bedside at lightening speed. We have a strong track record of working together to advance DNA-based solutions into the clinic and look forward to advancing these first-in-human studies as a possible risk mitigation approach for COVID-19.”

This paradigm-shifting award supports a unique public-private collaboration, which includes world-class capabilities in synthetic DNA therapeutics and monoclonal antibody technology. Together, with the support of exceptional clinical and translational teams and a global pharmaceutical company, this multidisciplinary approach is uniquely suited to address the unprecedented global health crisis brought about by COVID-19.

The program goal will be to rapidly design, enhance and scale SARS-CoV-2-specific DMAbs, and move them into laboratory and animal model studies. If successful, this will provide the foundation for rigorous, first-in-human clinical trials.

“This partnership broadens the scope and application of our DNA medicines platform across the spectrum of needed COVID-19 treatment modalities and opens the door for faster, more cost effective, and scalable production of monoclonal antibody products for other infectious diseases, cancers and other unmet medical needs,” said J. Joseph Kim, Ph.D., president and CEO of INOVIO. “Working with our partners, we are excited about the potential this offers both for situations requiring immediate clinical response and benefit.”

Mark Esser, VP and Head of Microbial Sciences, AstraZeneca, said, “We are excited to combine capabilities with Wistar and this world-class team to evaluate the potential of these DNA-delivered antibodies to impact the way we can respond to prevent and treat infection.”

“This COVID-19 pandemic presents a unique and immediate challenge to the world, one in which DNA treatments have the potential to move us to a future where COVID-19 is much more manageable,” said Pablo Tebas, M.D., a professor of Infectious Diseases at the Perelman School of Medicine at the University of Pennsylvania. “We are eager to build upon previous DMAb research and put it to the test against COVID-19.”

“We are very excited and honored to be part of this extraordinary team,” said Jesper Pallesen, Ph.D., assistant professor of molecular and cellular biochemistry at Indiana University. “The promise of DMAb technology is huge, and its implementation into our global anti-COVID-19 efforts will leave a resonating and lasting footprint. We are delighted to bring structural biology expertise to the team and to provide atomic-detail evaluation of DMAb technology efficacy mechanisms.”

Wistar, INOVIO, and the University of Pennsylvania with the Department of Defense and the Coalition for Epidemic Preparedness Innovations (CEPI) are in late-stage studies of a synthetic DNA vaccine for COVID-19. Through the collaboration with JPEO-CBRND, this work is supported by the Office of the Assistant Secretary of Defense for Health Affairs with funding from the Defense Health Agency.

Grant information: Synthetic DNA-encoded monoclonal antibodies (DMAbs) targeting COVID-19, 2020-2022.

*Data from the Johns Hopkins Coronavirus Research Center and The COVID Tracking Project at The Atlantic.

###

The Wistar Institute is an international leader in biomedical research with special cancer, immunology, infectious disease research, and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the United States, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. wistar.org.

About Indiana University Research
IU’s world-class researchers have driven innovation and creative initiatives that matter for 200 years. From curing testicular cancer to collaborating with NASA to search for life on Mars, IU has earned its reputation as a world-class research institution. Supported by $854 million last year from our partners, IU researchers are building collaborations and uncovering new solutions that improve lives in Indiana and around the globe.

Wistar Creates a New Synthetic DNA Vaccine Against Powassan Virus

PHILADELPHIA — (Oct. 29, 2020) — Scientists at The Wistar Institute have designed and tested the first-of-its-kind synthetic DNA vaccine against Powassan virus (POWV), targeting portions of the virus envelope protein. A rapidly reemerging tick-borne disease, POWV has been reported to be fatal in 10% of infected people with detrimental neurological consequences including encephalitis and meningitis. This new POWV vaccine candidate, described in a paper published today in PLOS Neglected Infectious Diseases, is one of many emerging infectious disease DNA vaccine discoveries being advanced by the Vaccine and Immunotherapy Center at The Wistar Institute.

Unlike the widely recognized Lyme disease, POWV causes a little known, potentially deadly infectious disease that is transmitted through tick bites during fall and spring seasons. POWV is an RNA virus belonging to the flavivirus family, the same as Zika virus, but passed to people by ticks instead of mosquitoes.

Transmission can occur rapidly and symptoms including flu-like fever, body aches, skin rash, and headaches can present anytime during the 1-4 week incubation period. Although still considered relatively rare, in recent years the number of reported cases of people sick from Powassan virus has been increasing in North America, including infecting former U.S. Senator Kay Hagan who contracted Powassan virus and died from the disease. There are no vaccines or therapies available to treat or prevent this emerging infection.

Kar Muthumani, Ph.D., former associate professor and director of the Laboratory of Emerging Infectious Diseases at The Wistar Institute,* and senior author on the study, collaborated with the laboratory of David B. Weiner, Ph.D., executive vice president and director of Wistar’s Vaccine and Immunotherapy Center, to design and test this synthetic DNA vaccine.

The effectiveness of this vaccine was evaluated in preclinical studies that showed a single immunization elicited broad T and B cell immune responses in mice similar to those induced naturally in POWV-infected individuals, and that vaccine-induced immunity provided protection in a POWV challenge animal model.

“The significant protection in mice demonstrated by our vaccine is highly encouraging and strongly supports the importance of this vaccine approach for further study,” said Muthumani.

Residents of and visitors in POWV-endemic areas are considered at risk of infection, especially during outdoor work and recreational activities. In the U.S., cases of POWV disease have been reported in Northeastern states and the Great Lakes region.

“Given the risk of serious complications from POWV and the 300% increase in incidence of POWV infection over the past 16 years, we will continue efforts to advance this urgently needed emerging infectious disease vaccine candidate towards the clinic,” said Weiner.

Co-authors: Hyeree Choi1, Michelle Ho1, Sagar B. Kudchodkar1, Emma L. Reuschel1, Kenneth Ugen5, Erin Reynolds2, Pablo Tebas3, J.Joseph Kim4, Mohamed Abdel-Mohsen1, Saravanan Thangamani2, David B. Weiner1, Kar Muthumani1
1Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA; 2Department of Microbiology and Immunology, SUNY Center for Environmental Health and Medicine, SUNY Upstate Medical University, Syracuse NY 13210. 3Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. 4Inovio Pharmaceuticals, Plymouth Meeting, PA., 5University of South Florida, Tampa, FL.

*Current address: K. Muthumani, CSO, GeneOne Life Sciences, Inc., Blue Bell, PA

Work supported by: INOVIO Pharmaceuticals, Inc.

Publication information: A novel synthetic DNA vaccine elicits protective immune responses against
Powassan virus, PLOS Neglected Tropical Diseases (2020). Advanced online publication.

#

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the United States, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. Wistar’s Business Development team is dedicated to advancing Wistar Science and Technology Development through creative collaborations. wistar.org.

Scientists Engineer DNA-based Nanotechnology to Stimulate Potent Antitumor Immune Responses in Preclinical Models

PHILADELPHIA — (Sept. 10, 2020) — Combining their expertise in protein engineering and synthetic DNA technology, scientists at The Wistar Institute successfully delivered nanoparticle antitumor vaccines that stimulated robust CD8 T cell immunity and controlled melanoma growth in preclinical models. Study results were published online in Cancer Immunology Research, a journal of the American Association for Cancer Research, and support exploration of this immunotherapy approach for additional cancer types.

Nanovaccines consist of extremely small (nano) particles — similar in size to bacteria and viruses — used to display multiple copies of an antigen and able to elicit strong immune responses. The team previously reported on using DNA instructions to launch in vivo production of nanoparticle vaccines (DLnano-vaccines).

DLnano-vaccines assembled in the body produced stronger immune responses than protein based nanoparticle vaccines in an infectious disease setting, especially inducing CD8 T cell responses.

“We wanted to test DLnano-vaccines for cancer immunotherapy and obtain proof of concept that this platform could be successfully applied in the cancer field, thanks to its effectiveness at prompting CD8 T cells responses,” said Daniel Kulp, Ph.D., associate professor in Wistar’s Vaccine & Immunotherapy Center and co-corresponding author of the study, who specializes in nanotechnology and protein engineering for vaccine development.

Due to their ability to specifically kill malignant cells, CD8 T cells play a pivotal role in anticancer immunity, therefore engagement of these cells represents a necessary step for the success of anticancer vaccine approaches, although this type of immune response is typically difficult to achieve by vaccination with proteins or inactivated virus.

Researchers designed DLnano-vaccines displaying 60 copies of protein parts derived from the melanoma-specific antigens Trp2 and Gp100 and tested these in mouse models of melanoma, observing prolonged survival that depended on CD8 T cell activation both in therapeutic and prophylactic settings.

“One of the advantages of synthetic DNA technologies over other methods is the versatility of the platforms,” said Ziyang Xu, Ph.D., a recent doctoral graduate working at Wistar and the first author of the study. “DLnano-vaccines may be designed for various cancer targets and our study shows this is a promising strategy for cancer immunotherapy that may warrant further testing.”

To elucidate the mechanism through which DLnano-vaccines activate CD8 T cells, the team studied the effects of the DNA-launched version of a previously described HIV nanoparticle vaccine (eOD-GT8-60mer). They observed that DLnano-vaccines administered via electroporation resulted in transient muscle cell apoptosis that attracted macrophage infiltration at the injection site, which in turn was instrumental to activate CD8 T cells.

DLnano-vaccines were developed using synthetic DNA technology in collaboration with the lab of David B. Weiner, Ph.D., Wistar executive vice president, director of the Vaccine & Immunotherapy Center, and the W.W. Smith Charitable Trust Professor in Cancer Research and also a co-senior author on the study.

Co-authors: Neethu Chokkalingam, Edgar Tello-Ruiz, Mamadou A. Bah, Susanne Walker, and Nicholas J. Tursi from Wistar; Megan C. Wise, Paul D. Fisher, Katherine Schultheis, Kate E. Broderick, and Laurent Humeau from Inovio Pharmaceuticals, Inc.

Work supported by: National Institutes of Health (NIH) grants U19 Al109646 and Collaborative Influenza Vaccine Innovation Centers (CIVICs) contract 75N93019C00051; additional support was provided by Inovio Pharmaceuticals, Inc., a grant from the W.W. Smith Charitable Trust, and the Monica H.M. Shander Memorial Fellowship.

Publication information: A DNA-launched nanoparticle vaccine elicits CD8+ T-cell immunity to promote in vivo tumor control, Cancer Immunology Research, 2020. Online publication.

###

The Wistar Institute is an international leader in biomedical research with special expertise in cancer, immunology, infectious disease research, and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the United States, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. Wistar’s Business Development team is dedicated to accelerating the translation of Wistar discoveries into innovative medicines and healthcare solutions through licensing, start-ups and creative collaborations. wistar.org.

The Wistar Institute & Allevi Inc. Collaborate on 3D Bioprinting Project to Advance COVID-19 Research

PHILADELPHIA — (June 25th, 2020) — The Wistar Institute, a biomedical research leader in cancer, immunology and infectious diseases, and Allevi, Inc. a Philadelphia based startup pioneering innovative 3D biofabrication technologies, announce a collaboration to use 3D bioprinting to help combat COVID-19.

In a time where the coronavirus pandemic has led to nearly 8 million infections and more than 437,000 deaths worldwide1, scientific research is more important than ever. Allevi will apply its patented 3D bioprinting platform to create three-dimensional lung models that Wistar scientists will use to study SARS-CoV-2, the virus that causes COVID-19. The goal will be to investigate the mechanisms deployed by this pathogen to infect humans and identify potential ways in which it may be blocked.

Wistar expertise in immunology and virology and its state-of-the-art biosafety level 3 capabilities to safely study pathogens combined with Allevi’s platform technology will be essential to the success of this collaboration.

“We are accompanying the spectacular work from our peers in the scientific community and have identified tremendous potential for our platform to enable COVID-19 research in a much faster, yet physiologically relevant manner,” said Taciana Pereira, Allevi Vice President of Life Sciences and a co-principal investigator on the project. “We believe that scientists from all areas need to unite now to solve this crisis, so we are ecstatic to work with Wistar and Dr. David Weiner.”

The collaboration will be led by David B. Weiner, Ph.D., Executive Vice President, director of the Vaccine & Immunotherapy Center (VIC) and W.W. Smith Charitable Trust Professor in Cancer Research. “We have been advancing scientific investigations aimed at the treatment and prevention of COVID-19, and we believe that Allevi’s innovative approach is an exciting modality to gain unique insights into the inner workings of the novel coronavirus,” stated Weiner, also a co-principal investigator on the project.

“This project has the potential to be a significant asset in the fight against COVID-19, and the scientific community will benefit greatly from this endeavor,” said Robert Langer, Sc.D., David H. Koch Institute Professor at the Massachusetts Institute of Technology (MIT) and Allevi Scientific Advisory Board member.

1Data from the Johns Hopkins University Center for Systems Science and Engineering (Updated June 16, 2020)

###

Founded in 2014, Allevi’s mission is to make it easy to design and engineer 3D tissues using desktop 3D bioprinters that are versatile, powerful, and easy-to-use. Allevi’s 3D bioprinters and bioinks are trusted by leading researchers and industry giants in hundreds of labs globally in the fields of tissue engineering, organ-on-a-chip research, pharmaceutical validation, biomaterial development, and regenerative medicine. allevi3d.com

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the United States, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. Wistar’s Business Development team is dedicated to advancing Wistar Science and Technology Development through creative collaborations. wistar.org.

Positive Results from Preclinical Testing Support Clinical Development of COVID-19 DNA Vaccine

PHILADELPHIA — (May 20, 2020) — The Wistar Institute, an international biomedical research leader in cancer, immunology and infectious disease, announces a study reporting initial immunogenicity of a synthetic DNA vaccine for SARS-CoV-2 developed in collaboration with Inovio Pharmaceutical, Inc., and other scientists. Published in Nature Communications, the report focuses on immune studies in animals, which show induction of functional antibody responses and T-cell responses following immunization. The vaccine, INO-4800, was advanced to phase 1 clinical testing in 10 weeks (clinicaltrials.gov NCT04336410).

The SARS-CoV-2 coronavirus emerged in December 2019 in the city of Wuhan, China. Infection causes the viral pneumonia disease COVID-19 that has spread quickly around the world. On March 11, 2020, the World Health Organization declared COVID-19 a global pandemic. Currently in the U.S., there are 1.5 million confirmed infections and more than 90,000 deaths occurring in just months, making COVID-19 infection the leading cause of death in the country.

No vaccines or major therapies are available to prevent infection or control the disease and the U.S. government has made development of a vaccine for COVID-19 a top priority. The viral genome became available on January 11, 2020, and the Wistar-Inovio team immediately began working to design and develop a new vaccine, based largely on their previous experience creating a synthetic DNA vaccine against the related coronavirus that causes Middle East respiratory syndrome (MERS).

Working with Inovio, a group led by David B. Weiner, Ph.D., Wistar executive vice president, director of the Vaccine & Immunotherapy Center (VIC) and W.W. Smith Charitable Trust Professor in Cancer Research, focused on rapid development of a synthetic DNA-based vaccine targeting the major surface antigen Spike protein (S) of SARS-CoV-2 into preclinical studies.

“We focused on both assay development and vaccination studies to test if immune responses induced by the vaccine in laboratory animals were functional against the virus. Our focus was the induction of immune responses that could in concept make it difficult for SARS-CoV-2 to have a home in the human body,” said Weiner, co-senior author of the publication. “The vaccine was designed leveraging our synthetic DNA technology, which has a set of conceptual advantages including accelerated clinical development built on a conceptually safe, non-live, simple platform that has scalable manufacturing and temperature stability. The vaccine-induced antibodies in vaccinated animals were of sufficient quantity and quality to block interaction of the virus with its receptor, which is its doorway into infecting the body, and were present in the lungs, a place where immunity is very important. The vaccine also induced T-cell function, which is critical for clearing viral infections from the body. These are indications that the immunity it induced might provide no escape for the SARS-CoV-2 virus. We are looking forward to additional studies and examining data from the ongoing clinical trial.”

The team includes Wistar VIC investigators Daniel Kulp, Ph.D., Kar Muthumani, Ph.D., and Ami Patel, Ph.D., who is a shared first author in the paper.

DNA vaccines work by delivering the genetic information required to make a certain viral protein in the recipient’s body, which stimulates the immune system to recognize that protein as foreign and build a response against it, thus targeting the virus and providing protection from infection.

Expressed in vitro, INO-4800 induced robust expression of the S protein. Within days following a single immunization of mice and guinea pigs, the vaccine induced antigen-specific T cell responses and functional antibodies that neutralize the virus, blocking the ability of the SARS-CoV-2 S protein to bind to the angiotensin-converting enzyme 2 (ACE2) host receptor on human cells.

Importantly, SARS-CoV-2-specific antibodies were detected in the lungs of immunized animals, suggesting they might protect against upper and lower respiratory disease that is associated with severe cases of COVID-19.

“While this candidate continues its journey as a potential vaccine against COVID-19, we are continuing our work in the lab to gather more information on the vaccine’s performance in small and larger animals,” said Patel, who is a research assistant professor at Wistar. “We will further characterize antibody functionality, cellular responses, and the ability of INO-4800 to mediate protection of animals against viral challenge.”

Co-authors: Trevor R.F. Smith and Stephanie Ramos from Inovio co-first authors. Other co-authors include Xizhou Zhu, Ebony N. Gary, Susanne N. Walker, Mansi Purwar, Ziyang Xu, Pratik Bhojnagarwala, Neethu Chokkalingam, Elizabeth Parzych, Emma L. Reuschel, Nicholas Tursi, Jihae Choi, Edgar Tello-Ruiz, Mamadou A. Bah, Yuanhan Wu, Daniel Park, Yaya Dia, Ali Raza Ali, Faraz I. Zaidi, Kevin Y. Kim, Sophia Reeder, Makan Khoshnejad, Jacqueline Chu, Kar Muthumani, and Daniel W. Kulp from Wistar; Dustin Elwood, Jian Yan, Katherine Schultheis, Jewell Walters, Maria Yang, Patrick Pezzoli, Arthur Doan, Miguel Vasquez, Igor Maricic, Dinah Amante, Alison Generotti, Timothy A. Herring, Ami Shah Brown, J Joseph Kim, Jean Boyer, Laurent M.P.F. Humeau, and Kate E. Broderick (corresponding author) from Inovio Pharmaceuticals; Nianshuang Wang, Daniel Wrapp, and Jason S McLellan from University of Texas at Austin; and B Wang from Fudan University, China.

Work supported by: Funding from the Coalition for Epidemic Preparedness Innovations (CEPI).

Publication information: Immunogenicity of a DNA vaccine candidate for COVID-19, Nature Communications (2020). Online publication.

###

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the United States, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. wistar.org.