Our Science

Qihong Huang, M.D., Ph.D.

Qihong Huang, M.D., Ph.D.

  • Associate Professor, Tumor Microenvironment and Metastasis Program
  • 215-495-6835, Office

The laboratory of Qihong Huang develops and applies screening technologies to functional genomics and cancer research. These advanced screening techniques are often called “high-throughput” due to their ability to rapidly screen large volumes of genetic information quickly. Huang uses these methods to systemically screen the entire human genome to find molecules related to tumor development. His goal is to study tumor metastasis, identify novel chemotherapy drug targets, and improve the efficacy of current cancer treatments.

Huang joined The Wistar Institute as an assistant professor in 2005. He received his medical degree at Shanghai Medical University, before becoming a researcher at the Shanghai Institute of Biochemistry of Chinese Academy of Sciences. He then came to the University of California, Davis, where he received a doctorate in microbiology in 2000. Huang began his work on genomic screening technologies at The Scripps Research Institute, where he was a postdoctoral fellow. There, he developed array-format high-throughput technology to discover new regulators of the gene p53, a tumor suppressor believed to be mutated in more than half of all human cancers.

At Wistar, a major focus of Huang’s research program is to discover new genes and signaling pathways that allow advanced cancer to metastasize, a poorly understood process that is the forerunner of most cancer-related deaths. His work has also grown to encompass the role of non-coding RNAs in cancer. Non-coding RNAs—RNA molecules are encoded much like genes in our DNA but do not code for proteins—are part of an emerging body of science that has demonstrated how RNA can, among other activities within a cell, regulate gene activity. The Huang laboratory uses screening technology to scan for new non-coding RNAs that have a role in promoting cancer metastasis. Ultimately, the Huang laboratory seeks to systemically identify molecules and signaling pathways that, when disrupted, will kill tumor cells but have no effect on normal cells.

With this selection of potential targets at hand, the Huang laboratory also uses screening technologies to find new potential therapeutics that will specifically inhibit the mechanisms that support tumor development. The small molecules found in these screens may also be more selective than conventional chemotherapy drugs and have fewer side effects. The laboratory also looks to use the principal of RNA interference—knocking out RNA before it can be transcribed into protein or effect gene regulation—as a means to create new cancer therapies. According to Huang, these studies will lead to new drug targets and chemotherapies that may be effective in the treatment of a broad spectrum of tumors.

Selected Publications

1. Gumireddy G, Li A, Kossenkov AV, Sakurai M, Yan J, Li Y, Xu H, Wang J, Zhang P, Zhang L, Showe L, Nishikura K, Huang Q. The mRNA edited form of GABRA3 suppresses GABRA3 mediated Akt activation and breast cancer metastasis. Nature Communications. 2016 Feb 12;7:10715.

2. Wang Z, Deng Z, Dahmane N, Tsai K, Wang P, Williams DR, Kossenkov AV, Showe LC, Zhang R, Huang Q, Conejo-Garcia JR, Lieberman PM. Telomere repeat RNA (TERRA) constitutes a nucleoprotein component of extracellular inflammatory exosomes. Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):E6293-300.

3. Yan X, Hu Z, Feng Y, Hu X, Yuan J, Zhao SD, Zhang Y, Yang L, Shan W, He Q, Fan L, Kandalaft LE, Tanyi JL, Li C, Yuan CX, Zhang D, Yuan H, Hua K, Lu, Y, Katsaros D, Huang Q, Montone K, Fan Y, Coukos G, Boyd J, Sood AK, Rebbeck T, Mills GB, Dang CV, Zhang L. Comprehensive genomic characterization of long non-coding RNAs across human cancers. Cancer Cell. 2015;28:529-540.

4. Gumireddy K, Li A, Chang DH, Liu Q, Kossenkov AV, Yan J, Korst RJ, Nam BT, Xu H, Zhang L, Ganepola GAP, Showe LC, Huang Q. AKAP4 is a circulating biomarker for non-small cell lung cancer. Oncotarget. 2015;6:17637-17647.

5. Yu G, Yao W, Gumireddy K, Li A, Wang J, Xiao W, Chen K, Xiao H, Li H, Tang K, Ye Z, Huang Q*, Xu H*. Pseudogene PTENP1 functions as a competing endogenous RNA to suppress clear cell renal cell carcinoma progression. Molecular Cancer Therapeutics. 2014;13:3086-3097. *corresponding author

6. Gumireddy K, Li A, Kossenkov AV, Cai KW, Liu Q, Yan J, Xu H, Showe L, Zhang L, Huang Q. ID1 promotes breast cancer metastasis by S100A9 regulation. Molecular Cancer Research. 2014;12(9):1334-1343.

7. Hu X, Feng Y, Zhang D, Zhao SD, Hu Z, Greshock J, Zhang Y, Yang L, Zhong X, Wang L, Jean S, Li C, Huang Q, KatsarosD, Montone KT, Tanyi JL, Lu Y, Boyd J, Nathanson KL, Li H, Mills GB, Zhang L. A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell. 2014;26:344-357.

8. Gumireddy K, Li A, Yan J, Setoyama T, Johannes GJ, Ørom UA, Tchou J, Liu Q, Zhang L, Speicher DW, Calin GA, Huang Q. Identification of a long noncoding RNA-associated RNP complex regulating metastasis at the translational Step. EMBO Journal. 2013;32:2672-2684.

9. Gumireddy K, Li A, Cao L, Yan J, Liu L, Xu X, Pazoles C, Huang, Q. NOV-002, a glutathione disulfide mimetic, suppresses tumor cell invasion and metastasis. Journal of Carcinogenesis and Mutagenesis. 2013 Apr 30;2013. pii: S7-002.

10. Chen J, Sprouffske K, Huang Q, Maley C. Solving the puzzle of metastasis: The evolution of cell migration in neoplasms. PLoS ONE. 2011;6(4):e17933.

11. Ørom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytinicki M, Notredame C, Huang Q, Guigo R, Shiekhattar R. Long noncoding RNAs with enhancer-like function in human cells. Cell. 2010;143(1):46-58.

12. Megraw M, Sethupathy P, Gumireddy K, Jensen ST, Huang Q*, Hatzigeorgiou AG. Isoform specific gene auto-regulation via miRNAs: a case study on miR-128b and ARPP-21. Theoretical Chemistry Accounts 2010;125:593-598. *corresponding author

13. Gumireddy K, Li A, Gimotty PA, Klein-Szanto AJ, Showe LC, Katsaros D, Coukos G,  Zhang L, Huang Q. KLF17 is a negative regulator of epithelial-mesenchymal transition and metastasis in breast cancer. Nature Cell Biology. 2009;11(11):1297-1304. (Cover article)

14. Huang Q*, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, Egan DA, Li A, Huang G, Klein-Szanto AJ, Gimotty PA, Katsaros D, Coukos G,  Zhang L, Puré E, Agami R. The microRNAs miR-373 and miR-520c Promote Tumor Invasion and Metastasis. Nature Cell Biology. 2008;10(2):202-210. *corresponding author

15. Gumireddy K, Young DD, Xiong D, Hogenesch JB, Huang Q*, Deiters A. Small Molecule Inhibitors of MicroRNA miR-21 Function. Angewandte Chemie International Edition. 2008;47(39):7482-7484. *corresponding author

16. Gumireddy K, Sun F, Klein-Szanto AJ, Gibbins GM, Gimotty PA, Saunders AJ, Schultz PG, Huang Q. An in vivo Selection for Metastasis Promoting Genes in the Mouse. Proceedings of National Academy of Sciences USA. 2007;104(16): 6696-6701.

17. Huang Q, Raya A, DeJesus P, Chao J, Quon KC, Caldwell JS, Chanda SK, Izpisua-Belmonte JC, and Schultz PG. Identification of p53 Regulators by Genome-wide Functional Analysis. Proceedings of National Academy of Sciences USA. 2004;101(10):3456-3461.

18. Huang Q, Deveraux QL, Maeda S, Salvesen GS, Stennicke HR, Hammock BD, and Reed JC. Evolutionary Conservation of Apoptosis Mechanism: Lepidopteran and Baculoviral IAPs are Inhibitors of Mammalian Caspase-9. Proceedings of National Academy of Sciences USA. 2000;97(4):1427-1432.