Scientists Drive Innovation at Wistar’s Ellen and Ronald Caplan Cancer Center
Wistar continues to be a dynamic environment prepared to tackle biomedical challenges in a collaborative, innovative, and inclusive culture. Read more about our Ellen and Ronald Caplan Cancer Center commitment to scientific career development, a diverse research community, and how previously introduced recruits are settling in and advancing impactful science.
ENHANCING CAREERS AND EXPANDING DIVERSITY
Italo Tempera, Ph.D., newly appointed Associate Director for Cancer Research Career Enhancement, was a postdoctoral fellow at Wistar and returned as an associate professor in the Gene Expression and Regulation Program in 2020. His research focuses on epigenetic mechanisms behind Epstein-Barr Virus (EBV). He was recently named associate director for Cancer Research Career Enhancement.
Tempera considers the time he spent at Wistar to be formative. With its very collaborative introductory environment, Wistar is an “… opportunity for our students not only to learn about our science but to get in contact with scientists.”
Furthermore, he outlines what he would like to accomplish in his new role. “We’re outstanding scientists and we have excellent mentors. The opportunities for our trainees to do an internship with different departments is something we want to push forward, and we want to expand the Cancer Biology Ph.D. program that we have now with Saint Joseph’s University.”
He shares that Wistar gave him the opportunity to grow as a scientist and advance in his research career. “When someone asks what was one of the most important aspects of a scientist’s pre- or post-doctoral training, my goal is for the trainee to think back and reply that being at Wistar has made all the difference.”
Jessie Villanueva, Ph.D., newly appointed Associate Director for Diversity, Equity, and Inclusion, joined Wistar first as a postdoctoral fellow and then was appointed assistant professor in the Molecular and Cellular Oncogenesis Program. Her work aims to identify targets for therapy to treat melanoma.
“Diversity leads to innovation and scientific excellence. New discoveries and scientific breakthroughs often rely on collaborations, and diverse teams are more creative and resourceful,” she shares.
For her new role, Villanueva aims to lead and inspire everyone at Wistar to integrate inclusion, diversity, and equity into all facets of the Institute. “Our goal is to continue fostering an inclusive community where everyone can develop to their full potential while contributing to Wistar’s mission of scientific discoveries.” To accomplish this, she plans to work with leaders and stakeholders across the Institute to identify challenges and areas for
improvement and propose strategies to address them.
“Diversity supports Wistar’s mission,” Villanueva asserts. She elaborates that many of the Institute’s scientific breakthroughs are largely impactful for biomedical sciences and human health, and these discoveries rely on “… outstanding scientists, trainees and staff with diverse backgrounds and skills who support Wistar’s goals wholeheartedly.”
ADVANCING IMPACTFUL SCIENCE
Nan Zhang, Ph.D., Assistant Professor, Immunology, Microenvironment & Metastasis Program, joined Wistar in September 2021 as an assistant professor and currently researches how immune cells play a role in tumor growth in abdominal cancers.
“Studying disease was always one of my passions,” Zhang shares as he describes both a personal and professional draw to cancer research. He began his career studying the immune system — particularly macrophages, a special population of white blood cells that removes unwanted materials in the body like harmful microorganisms or dead cells.
Upon completion of his postdoctoral position, Zhang felt that cancer in the peritoneal space — the area of the body encompassing the abdomen and the organs within it — would be a great direction to pursue for his future career because of its unique complexity and how it’s less understood relative to other focus areas for cancer research. This is what he works on now at Wistar.
Immersed in the Institute’s world class techniques, resources, and renowned scientists, Zhang continues to push forward his research to tackle how to use specialized cells called macrophages to combat tumors as a checkpoint therapy for cancer. He is also investigating immunological questions about the microenvironment of the peritoneal space and how this knowledge can help inform therapeutics and treatment development.
He shares, “Wistar is competitive, and the support in the Institute for junior faculty is great. We have meetings every week and this is an environment I really wanted for my career and research.”
Noam Auslander, Ph.D., Assistant Professor, Molecular & Cellular Oncogenesis Program, joined Wistar in June 2021 as an assistant professor and conducts her research at the intersection of computer science and biological science. She uses machine learning to investigate genetic factors underpinning cancer evolution to improve diagnostics and therapeutics.
“I work on cancer and viruses. Both are complex and have high mutation rates. As a computational scientist, it’s very interesting because there are a lot of computational challenges that can be investigated,” Auslander comments.
She joined The Wistar Institute because of its reputation and expertise, particularly in researching both cancer and viruses. She shares her experience during her first year, “It’s a small institute with a lot of opportunities to collaborate. It’s a very good environment and people are very helpful and supportive.”
Simultaneous to establishing and expanding her lab group, Auslander is currently looking into improving clinical prognosis to cancer and other diseases by uncovering unknown infectious agents and therapeutic biomarkers. To accomplish this, her lab applies the power of advanced computational platforms to very intricate and complex biomedical data to make these predictors of treatment responses more biologically interpretable. She says, “My main focus at the moment is to train my growing lab and develop frameworks to identify new viruses and eventually new microbiomes in cancer.”